Abstract
Neural networks have filled the information space. On the one hand, this indicates the scientific and technological movement of contemporary society (perhaps, AGI is already waiting for us outside the door). On the other hand, in everyday discourse there are extensive discussions about the fact that when neural networks are created, a person is left with hard work. However, a holistic understanding of the neural network is associated with a movement from the mythotechnological framework to the phenomenon itself and the questioning of its social role. The key aim of the paper is returning, through observing the range of functions of current LLMs, to the classic question of whether a machine can think. At the same time another question remains, are humans ready to accept the social subjectivity of machines.
References
SAG-AFTRA strike. (n.d.). Wikipedia. https://en.wikipedia.org/wiki/2023_SAG-AFTRA_strike
AI Will Smith eating spaghetti pasta (AI footage and audio). (n.d.). YouTube. https://www.youtube.com/watch?v=XQr4Xklqzw8
Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge University Press.
Bishop, J. M. (2015). History and philosophy of neural networks. In H. Ishibuchi (Ed.), Computational Intelligence (pp. 2–73). Encyclopedia of Life Support Systems (EOLSS). https://www.researchgate.net/publication/271841595%0AHISTORY
Brockman, J. (Ed.). (2019). Possible minds: Twenty-five ways of looking at AI. Penguin Press.
Chalmers, D. J. (2023). Could a Large Language Model be Conscious? https://doi.org/10.48550/ARXIV.2303.07103
Christen, P., & Del Fabbro, O. (2021). Automatic Programming of Cellular Automata and Artificial Neural Networks Guided by Philosophy. In R. Dornberger (Ed.), New Trends in Business Information Systems and Technology (Vol. 294, pp. 131–146). Springer International Publishing. https://doi.org/10.1007/978-3-030-48332-6_9
Creating video from text. (n.d.). OpenAI. https://openai.com/sora
Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., Zoph, B., Fedus, L., Bosma, M., Zhou, Z., Wang, T., Wang, Y. E., Webster, K., Pellat, M., Robinson, K., … Cui, C. (2021). GLaM: Efficient Scaling of Language Models with Mixture-of-Experts (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2112.06905
Fridman, L. (n.d.). Sam Altman: OpenAI, GPT-5, Sora, Board Saga, Elon Musk, Ilya, Power & AGI | Lex Fridman Podcast #419. YouTube. https://www.youtube.com/watch?v=jvqFAi7vkBc
Fuller, M. (2008). Software studies: A lexicon. MIT Press. https://doi.org/10.7551/mitpress/9780262062749.001.0001
GPT-4. (2023, March 14). OpenAI. https://openai.com/research/gpt-4
Ha, D., & Schmidhuber, J. (2018). Recurrent World Models Facilitate Policy Evolution. Neural Information Processing Systems, 31.
Hello GPT-4o. (2024, May 13). OpenAI. https://openai.com/index/hello-gpt-4o/
Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. de L., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican, K., Driessche, G. van den, Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., … Sifre, L. (2022). Training Compute-Optimal Large Language Models (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2203.15556
How to tame the neural net. (2024, January 30). Habr. https://habr.com/ru/amp/publications/790138/ (In Russian).
Introducing ChatGPT. (2022, November 30). OpenAI. https://openai.com/blog/chatgpt
Introducing Sora—OpenAI’s text-to-video model. (n.d.). YouTube. https://www.youtube.com/watch?v=HK6y8DAPN_0
Jabborov, D. (2022, April 1). Moscow grandmother helped Yandex's robot courier to cross the road. Gazeta.Ru. https://www.gazeta.ru/tech/news/2022/04/01/17508595.shtml (In Russian).
Jia, S., Lyu, R., Zhao, K., Chen, Y., Yan, Z., Ju, Y., Hu, C., Li, X., Wu, B., & Lyu, S. (2024). Can ChatGPT Detect DeepFakes? A Study of Using Multimodal Large Language Models for Media Forensics (Version 4). arXiv. https://doi.org/10.48550/ARXIV.2403.14077
Karpathy, A., Abbeel, P., Brockman, G., Chen, P., Cheung, V., Duan, Y., Goodfellow, I., Kingma, D., Ho, H., Houthooft, R., Salimans, T., Schulman, J., Sutskever, I., & Zaremba, W. (2016, June 16). Generative models. https://openai.com/research/generative-models
Kotenkov, I. (2023a, March 18). GPT-4: What the new neural network has learned, and why it's a little creepy. Habr. https://habr.com/ru/companies/ods/articles/722644/ (In Russian).
Kotenkov, I. (2023a, March 6). How ChatGPT works: Explaining in simple Russian the evolution of language models from T9 to miracle. Habr. https://habr.com/ru/companies/ods/articles/716918/ (In Russian).
Kotenkov, I. (2024, February 28). The Real Purpose of OpenAI SORA: How and Why to Simulate the “Matrix” for ChatGPT. Habr. https://habr.com/ru/articles/794566/ (In Russian).
Lowe, R., & Leike, J. (2022, January 27). Aligning language models to follow instructions. Openai. https://openai.com/research/instruction-following
Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. Journal of Database Management, 32(4), 65–82. https://doi.org/10.4018/JDM.2021100105
Mamardashvili, M. K., & Piatigorsky, A. M. (2009). Symbol and consciousness. Gnosis (In Russian).
Manovich, L. (2017). Theories of Theories of Software Culture. Krasnaya lastochka. (In Russian).
Manovich, L. (2019). AI Aesthetics. Strelka Press.
Marr, B. (2023, May 30). 10 Amazing Real-World Examples Of How Companies Are Using ChatGPT In 2023. Forbes. https://www.forbes.com/sites/bernardmarr/2023/05/30/10-amazing-real-world-examples-of-how-companies-are-using-chatgpt-in-2023/
OpenAI Charter. (n.d.). OpenAI. https://openai.com/charter
OpenAI Sora in Action: Tokyo Walk. (n.d.). YouTube. https://www.youtube.com/watch?v=tRSdt5kmeW0
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical Report (Version 6). arXiv. https://doi.org/10.48550/ARXIV.2303.08774
Photographer admits prize-winning image was AI-generated. (2023, April 17). The Guardian. https://www.theguardian.com/technology/2023/apr/17/photographer-admits-prize-winning-image-was-ai-generated
Qin, Z., Zhang, H., Qin, X., Xu, K., Dimitrov, K. N. A., Wang, G., & Yu, W. (2018). Fundamentals of Software Culture. Springer Singapore. https://doi.org/10.1007/978-981-13-0701-0
Rotrattanadumrong, R., & Yokobayashi, Y. (2022). Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. Nature Communications, 13(1), 4847. https://doi.org/10.1038/s41467-022-32538-z
Schwab, K. (2016). The fourth industrial revolution. Crown Business.
Sora: First impressions. (2024, March 25). OpenAI. https://openai.com/blog/sora-first-impressions
The Matrix. (n.d.). IMDb. https://www.imdb.com/title/tt0133093/
The world’s most widely adopted AI developer tool. (n.d.). GitHub. https://github.com/features/copilot
Tiku, N. (2022, June 11). The Google engineer who thinks the company’s AI has come to life. Washington Post. https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/
Webber, S. (n.d.). A Taylor Swift Sex Tape? IMDb. https://m.imdb.com/news/ni46594315/
Yang, Z. (2014). Comprehensive Biomedical Physics. Elsevier.
Ziegler, D., Wu, J., Brown, T., Amodei, D., Radford, A., Christiano, P., & Irving, G. (2019, September 19). Fine-tuning GPT-2 from human preferences. OpenAI. https://openai.com/research/fine-tuning-gpt-2
This work is licensed under a Creative Commons Attribution 4.0 International License.